
Animation Made Easy
by Xavier Pacheco

This article demonstrates how
you can achieve simple sprite

animation using Delphi and the
Object Pascal Language. It also
shows how Delphi simplifies
what is usually considered a
tedious process since Delphi
automatically manages device
context for you.

The example that I’ve created
illustrates how you would display
a background image (the universe)
and draw a sprite image (the UFO)
at different locations on the
background.

The project’s source code is
shown in Listings 1 and 2:
ANIMATE.DPR and UNIT1.PAS. These
files and the required bitmaps will
be included on the free disk which
will come with Issue 2 of The Delphi
Magazine.

This simple animation example
uses three Windows .BMP files:
BACK.BMP to serve as the main
form’s background, with AND.BMP
and OR.BMP to make up the sprite
image – both are 64x32 pixel
bitmaps of a UFO.

A TSprite class that I have
defined contains the sprite’s prop-
erties that maintain its location on
the form and the Create() and
Done() methods.

TSprite.Create creates two
TBitMap classes, FAndImage and
FOrImage, and reads in the two
bitmap files using the
TBitMap.LoadFromFile() method. It
then sets its properties Top, Left,
Width and Height accordingly.
TSprite.Done frees the memory
used by FAndImage and FOrImage.

The main form has the variables
BackGnd1, BackGnd2 of type TBitMap
and Sprite of type TSprite. BackGnd1
is our original bitmap that we use
for our background. BackGnd2 is the
copy of BackGnd1 to which we
perform the BitBlt()ing of the
sprite image.

The reason we do all the drawing
to BackGnd2 instead of the form’s
canvas is because to achieve
animation we must call BitBlt()

three times: once to erase the
sprite on the form’s canvas, once
to AND FAndImage to the form’s
canvas, and once to OR FOrImage to
the form’s canvas. All this drawing
to the form’s canvas results in a
horrible flicker when the image is
drawn continuously.

By performing the grunt work on
BackGnd2, we can copy a rectangle
surrounding the old sprite location
and new sprite location from
BackGnd2 to the form’s canvas with
one BitBlt() call to eliminate
flicker. Therefore, the overhead of
maintaining a separate copy of the
form’s canvas is justified.

FAndImage (see Figure 1) effec-
tively creates a black hole where
the sprite is to be displayed on the
background and preserves the
background colors where the
sprite does not appear by using the
BitBlt() function with the SRCAND
operation.

As you can see from the Figure 1,
the sprite is shown where the pixel
color is black. Since each black
pixel has the value 0 and each

white pixel has the value 1, when
performing an AND operation of
FAndImage to the destination
background the resulting color is
preserved where FAndImage’s color
is white. Where FAndImage is black,
the result is black.

BackGround 1001 some color
Image AND 0000 black
Result 0000 black

BackGround 1001 some color
Image AND 1111 white
Result 1001 some color
 (same as Destination)

Once I create this black hole, I draw
the actual image, still preserving
the background’s original colors,
by BitBlt()ing FOrImage using the
SRCPAINT operation.

Notice from Figure 2 that the
FOrImage’s sprite contains the
actual colors while its background
is white, or all 1s. You can see from
the boolean operation below
how ORing the color white to
a destination maintains the

The example
program
running, with
the spaceship
scooting across
a starry sky!
It’s in full colour
of course and
this print doesn’t
do it full justice.

Figure 1 Figure 2

April 1995 The Delphi Magazine 33

destination’s color. Since we are
ORing the sprite to an only-black
background (our black hole), the
sprite’s colors are maintained.

BackGround 1001 some color
Image OR 1111 white
Result 1001 some color

BackGround 0000 black
Image OR 1101 some color
Result 1101 some color
 (same as FOrImage)

All the drawing is performed in the
TForm1.DrawSprite method. Here, I
use some simple logic to keep the
sprite within the form’s client area.

I then erase the old sprite from
BackGnd2, re-draw it in BackGnd2 at
the new location, and finally copy a
rectangle from BackGnd2 to
Form1.canvas to effectively erase
and re-position the sprite on
Form1’s canvas.

TForm1.MyIdleEvent is where
TForm1.DrawImage is called. I then
assign this method to the
Application.OnIdle event handler
in TForm1.Create. The method
Application.OnIdle, as the name
implies, is executed when the
application is in Idle.

TForm1.Paint BitBlt()s the
original background, BackGnd1, to
its canvas.

Notice the TSprite is not a
component in and of itself, that is,
a descendant of an original Delphi
component such as TControl or
TGraphicControl.

The reason I did this was
because the form repaints itself
whenever making changes to any
child controls causing a yucky
flicker on the screen. Also, the
TSprite object was simple enough
that I didn’t really need any data
or methods from an already
existing object.

Although this example is very
simple, it is possible to extend the
functionality of TSprite to be more
self contained, such as maintaining
it’s own direction, drawing itself,
and being a non-static image, that
is an image that changes as it is
moved on the background.

Also, I didn’t do anything special
in this example to create true

program Animate;
uses
 Forms,
 Unit1 in ’UNIT1.PAS’ {Form1};
{$R *.RES}
begin
 Application.CreateForm(TForm1,
 Form1);
 Application.Run;
end.

Listing 1 ANIMATE.DPR

unit Unit1;

interface
uses
 SysUtils, WinTypes, WinProcs, Messages,
 Classes, Graphics, Controls,
 Forms, Dialogs, Menus, Stdctrls;

type
 TSprite = class
 private
 FWidth: integer;
 FHeight: integer;
 FLeft: integer;
 FTop: integer;
 FAndImage, FOrImage: TBitMap;
 public
 property Top: Integer read FTop write FTop;
 property Left: Integer read FLeft write FLeft;
 property Width: Integer read FWidth
 write FWidth;
 property Height: Integer read FHeight
 write FHeight;
 constructor Create(AOwner: TComponent);
 destructor Done;
 end;
 TForm1 = class(TForm)
 procedure FormCreate(Sender: TObject);
 procedure FormPaint(Sender: TObject);
 procedure FormDestroy(Sender: TObject);
 procedure Timer1Timer(Sender: TObject);
 private
 BackGnd1, BackGnd2: TBitMap;
 Sprite: TSprite;
 GoLeft,GoRight,GoUp,GoDown: boolean;
 procedure MyIdleEvent(Sender: TObject;
 var Done: Boolean);
 procedure DrawSprite;
 end;

const
 BackGround = ’BACK.BMP’;
var
 Form1: TForm1;

implementation

{$R *.DFM}

constructor TSprite.Create(AOwner: TComponent);
begin
 inherited Create;
 FAndImage := TBitMap.Create;
 FAndImage.LoadFromFile(’AND.BMP’);
 FOrImage := TBitMap.Create;
 FOrImage.LoadFromFile(’OR.BMP’);
 Left := 0;
 Top := 0;
 Height := FAndImage.Height;
 Width := FAndImage.Width;
end;
destructor TSprite.Done;
begin
 FAndImage.Free;
 FOrImage.Free;
end;

procedure TForm1.FormCreate(Sender: TObject);
begin
 BackGnd1 := TBitMap.Create;
 with BackGnd1 do begin
 LoadFromFile(BackGround);
 Parent := nil;
 end;
 BackGnd2 := TBitMap.Create;
 with BackGnd2 do begin
 LoadFromFile(BackGround);
 Parent := nil;
 end;
 Sprite := TSprite.Create(self);
 GoRight := true;
 GoDown := true;
 GoLeft := false;
 GoUp := false;
 Application.OnIdle := MyIdleEvent;
 ClientWidth := BackGnd1.Width;
 ClientHeight := BackGnd1.Height;
end;

procedure TForm1.MyIdleEvent(Sender: TObject;
 var Done: Boolean);
begin
 DrawSprite;
 Done := false;
end;

procedure TForm1.DrawSprite;
var
 OldOrigin: TPoint;
 TempRect: TRect;
begin
 With OldOrigin do begin
 X := Sprite.Left;
 Y := Sprite.Top;
 end;
 with Sprite do begin
 if GoLeft then
 if Left > 0 then
 Left := Left - 1
 else begin
 GoLeft := false;
 GoRight := true;
 end;
 if GoDown then
 if (Top + Height) < self.ClientHeight then
 Top := Top + 1
 else begin
 GoDown := false;
 GoUp := true;
 end;
 if GoUp then
 if Top > 0 then
 Top := Top - 1
 else begin
 GoUp := false;
 GoDown := true;
 end;
 if GoRight then
 if (Left + Width) < self.ClientWidth then
 Left := Left + 1
 else begin
 GoRight := false;
 GoLeft := true;
 end;
 end;
 {Erase the old sprite in BackGnd2 }
 with OldOrigin do
 BitBlt(BackGnd2.Canvas.Handle, X, Y,
 Sprite.Width, Sprite.Height,
 BackGnd1.Canvas.Handle, X, Y, SrcCopy);
 {Draw the sprite at the new location in BackGnd2}
 with Sprite do begin
 BitBlt(BackGnd2.Canvas.Handle, Left, Top,
 Width, Height, FANDImage.Canvas.Handle,
 0, 0, SRCAND);
 BitBlt(BackGnd2.Canvas.Handle, Left, Top,
 Width, Height, FOrImage.Canvas.Handle,
 0, 0, SRCPAINT);
 end;
 {Copy a rectangle from BackGnd2 to erase and
 reposition the sprite to the form’s canvas}
 with OldOrigin do
 BitBlt(Canvas.Handle, X-2, Y-2,
 Sprite.Width+2, Sprite.Height+2,
 BackGnd2.Canvas.Handle, X-2, Y-2, SrcCopy);
end;
procedure TForm1.FormPaint(Sender: TObject);
begin
 BitBlt(Canvas.Handle, 0, 0, ClientWidth,
 ClientHeight, BackGnd1.Canvas.Handle,
 0, 0, SrcCopy);
end;

procedure TForm1.FormDestroy(Sender: TObject);
begin
 BackGnd1.Free;
 BackGnd2.Free;
 Sprite.Free;
end;

procedure TForm1.Timer1Timer(Sender: TObject);
begin
 DrawSprite;
end;
end.

Listing 2 UNIT1.PAS
[Sorry about the small text size, it’s the only way we could get it all
in I’m afraid, but the code will be on the disk with Issue 2. Editor]

bounces – something I can keep for
a later project!

Xavier Pacheco is a Consulting
Engineer at Borland International.
You can reach Xavier on
CompuServe at 76711,666 or at
xpacheco@wpo.borland.com

34 The Delphi Magazine Issue 1

